The
G7 Research Group
at the Munk School of Global Affairs and Public Policy at Trinity College
in the University of Toronto presents the

2018 Charlevoix G7 Interim Compliance Report
10 June 2018 — 10 December 2018

Prepared by
Angela Min Yi Hou, Julia Tops, and Cindy Xinying Ou

25 February 2019

www.g7.utoronto.ca
g7@utoronto.ca
@g7_rg

“We have meanwhile set up a process and there are also independent institutions monitoring which objectives of our G7 meetings we actually achieve. When it comes to these goals we have a compliance rate of about 80%, according to the University of Toronto. Germany, with its 87%, comes off pretty well. That means that next year too, under the Japanese G7 presidency, we are going to check where we stand in comparison to what we have discussed with each other now. So a lot of what we have resolved to do here together is something that we are going to have to work very hard at over the next few months. But I think that it has become apparent that we, as the G7, want to assume responsibility far beyond the prosperity in our own countries. That’s why today’s outreach meetings, that is the meetings with our guests, were also of great importance.”

Chancellor Angela Merkel, Schloss Elmau, 8 June 2015

G7 summits are a moment for people to judge whether aspirational intent is met by concrete commitments. The G7 Research Group provides a report card on the implementation of G7 and G20 commitments. It is a good moment for the public to interact with leaders and say, you took a leadership position on these issues — a year later, or three years later, what have you accomplished?

Achim Steiner, Administrator, United Nations Development Programme,
in G7 Canada: The 2018 Charlevoix Summit
Contents

Preface .. 3
Research Team ... 4
 Lead Analysts ... 4
 Compliance Analysts ... 4
Executive Summary ... 6
 The Interim Compliance Score .. 6
 Compliance by Member .. 6
 Compliance by Commitment ... 6
 The Compliance Gap Between Members .. 6
Future Research and Reports .. 6
 Table A: 2018 Priority Commitments Selected for Assessment* ... 7
 Table B: 2018 G7 Charlevoix Interim Compliance Scores ... 9
 Table C: 2018 G7 Charlevoix Interim Compliance Scores by Country .. 10
 Table D: 2018 G7 Charlevoix Interim Compliance Scores by Commitment ... 11
1. Democracy: Terrorism ... 12
2. Democracy: Transparency .. 42
3. Trade: International Rules and Intellectual Property Rights .. 53
4. Macroeconomic Policy: Growth that Works for Everyone .. 68
5. Labour and Employment: Skills and Education .. 103
6. Health: Mental Health .. 137
7. Development: African Agenda 2063 ... 153
9. Gender: Development Finance .. 198
10. Climate Change: Gender .. 223
11. Climate Change: Paris Agreement ... 238
12. Climate Change: Insurance Risk .. 266
13. Environment: Earth Observation Technologies .. 280
14. Environment: Coastal Resilience ... 299
15. Environment: Ocean Plastics Charter .. 313
16. Environment: Marine Litter ... 331
18. Gender: Quality Education for Girls and Women ... 375
19. Gender: Equality in Labour Markets ... 401
20. Gender: Sexual and Gender-Based Violence in Digital Contexts .. 422

25 February 2019
13. Environment: Earth Observation Technologies

“We intend to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the poorest and most vulnerable regions of the world in order to support … infrastructure and building design” (environment)

Charlevoix Blueprint for Healthy Oceans, Seas and Resilient Coastal Communities

Assessment

<table>
<thead>
<tr>
<th></th>
<th>No Compliance</th>
<th>Partial Compliance</th>
<th>Full Compliance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Germany</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>United States</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Union</td>
<td></td>
<td></td>
<td>+1</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>+0.50</td>
</tr>
</tbody>
</table>

Background

Earth observation technologies (EOs) provide academics, governments, and other decision-makers with an overview of the environmental landscape.¹⁹¹⁴ Uses for EOs include disaster risk assessment, accurate weather reports, climate change modelling and monitoring of the air, seas, and land.¹⁹¹⁵ If a country has leveraged EO technology for disaster prevention and response, there is an assumption that the data collected will be used for infrastructure planning and design. The importance of EOs first came to the attention of the G7 in 1984, when the G7 Working Group on Technology, Growth, and Employment created the Committee on Earth Observation Satellites (CEOS) based on a recommendation from the Panel of Experts on Remote Sensing from Space.¹⁹¹⁶ CEOS, of which the European Commission and the European Union are currently Chairs, is the primary forum of space-based earth observations. It has been instrumental in the development of the Group on Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS).¹⁹¹⁷

Despite the commission of CEOS in 1984, the G7 left the topic of EOs relatively unaddressed until the G7 Tsukuba, Ibaraki Science and Technology ministers meeting on 17 May 2016.¹⁹¹⁸ At the ministers meeting, G7 ministers reaffirmed the importance of investment in EOs, especially in the context of open data sharing, by saying: “fundamental to the progress of open science is the continued investment by governments and others … in suitable infrastructures and services for data collection, analysis, preservation, and dissemination.”¹⁹¹⁹

On 8-9 June 2018, during the G7 Charlevoix Summit, G7 members adopted the Charlevoix Blueprint for Healthy Oceans, Seas and Resilient Coastal Communities. The Charlevoix Blueprint recognized that open data sharing is particularly important in the context of capacity-building in developing countries, where gaps in information create difficulties for decision-makers seeking to improve infrastructure.\[^{1920}\] Infrastructural improvements are necessary to create more resilient coastal communities, who are amongst the most vulnerable to climate change.\[^{1921}\] Thus, members seek to use technological advances in EOs to address issues surrounding “disaster risk prevention, contingency planning, spatial planning, infrastructure, and building design, early warning systems and risk transfer mechanisms” that disproportionately affect developing countries.\[^{1922}\]

G7 members will seek to scale up efforts made by CEOS and its working groups, particularly the Working Group for Capacity Building and Data Democracy (WGCapD).\[^{1923}\] In partnership with the United Nations and its agencies, the WGCapD has already developed and executed a number of capacity-building activities, such as workshops, training, and the creation of “best practices” resources.\[^{1924}\] Thus, there is already considerable foundation available for G7 members to build upon.

The United Nations has been actively involved in the development of EOs through a variety of partnerships in the private sector. During the UNISPACE+50 conference on 2 July 2018, Airbus and the United Nations Office for Outer Space Affairs signed a memorandum of understanding outlining the usage of Airbus EOs for climate tracking.\[^{1925}\] Additionally, on 16 July 2018, the UN Environment Programme announced a collaboration with Google to use the company’s cloud computing and earth observation catalogs, such as satellite imagery, to analyze changes in the Earth’s environment.\[^{1926}\]

Furthermore, the United Nations Statistics Division and the World Bank recently published the “Integrated Geospatial Information Framework” on 24 July 2018. The new guide promotes the proper use of geospatial data in a state’s decision-making process, specifically in low and middle-income countries. The framework further supports the EO commitment of the G7 member states by encouraging the effective use of geospatial information to improve resource allocation and sustainable development.\[^{1927}\]

Commitment Features

The G7 members “intend to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the poorest and most vulnerable regions of the world in order to support … infrastructure and building design (environment).”\[^{1928}\]

\[^{1921}\] Charlevoix Blueprint for Healthy Oceans, Seas and Resilient Coastal Communities, G7 (Charlevoix) 9 June 2018. Access Date: 29 June 2018. http://www.g7.utoronto.ca/summit/2018charlevoix/oceans-blueprint.html.
\[^{1922}\] Charlevoix Blueprint for Healthy Oceans, Seas and Resilient Coastal Communities, G7 (Charlevoix) 9 June 2018. Access Date: 29 June 2018. http://www.g7.utoronto.ca/summit/2018charlevoix/oceans-blueprint.html.
is understood to mean that compliance with this commitment entails a direct action with the aim to catalyze innovation in Earth Observation technologies. “Intend” is considered to be a pledge of a goal that has a specific “plan or purpose.”

This commitment is broken up into two sections: 1) “to intend to leverage innovation in the field of Earth observation technologies and related applications” and 2) “make them broadly available in the poorest and vulnerable regions of the world in order to support infrastructure and building design.”

The first part of the commitment, “leverage innovation,” is understood to mean the use of technological advancements to rectify gaps in Earth observation coverage. Examples of leveraging innovation include raising awareness of the value of EOs, providing support for increased access to Earth observation products and tools, and targeted training workshops for EOs. Then, “Earth observation technologies and related applications” is understood to mean remote sensing technologies with imaging devices and the systems that process/assess the earth system, such as GEOSS. Earth observation relies on the use of space-based satellites.

To fulfill the first aspect of the commitment, the G7 member must advance innovation through technological advancements in Earth observation coverage by EOs. This may include unilateral, independent and group research amongst G7 members.

The second part of this commitment refers to the dissemination of innovations in EOs to a larger community of users in the developing world. It is important to increase access to EOs in these communities to fill information gaps that prevent decision-makers from accurately assessing changes in the environment and consequently, making appropriate modifications to infrastructure. For the purpose of this commitment, “poorest” nation is defined as a country with a less developed industrial base and a low Human Development Index relative to other countries. “Vulnerable regions” will be defined as areas that “geophysical, biological and socio-economic systems are susceptible to, and unable to cope with, adverse impacts of climate change.” In the context of the document in which commitment is found, there is a particular focus on coastal communities in the developing world for the purpose of improving coastal resilience to the effects of climate change.

The idea “support[ing] infrastructure and building design” is understood to mean upgrading physical and digital systems in order to adapt to the impacts of climate change. Support is defined as the act of “providing aid, assistance, or backing up an initiative, or entity.” Infrastructure is defined as the system of public works of a country, state, or region and the resources (such as personnel, buildings, or equipment) required for an activity. Infrastructure in developing countries may not have the capacity to offset the impacts of climate change. Examples of support for infrastructure include the mobilization of funds, the provision of training, knowledge transfers and open data sharing.

To fulfill the second aspect of the commitment, the G7 member must make these innovations explicitly available to the poorest and most vulnerable countries. The recommendation needs to support infrastructure or building design for these developing countries.

Thus, to achieve full compliance, the G7 member must have leveraged innovation in the field of Earth observation technologies and related applications, while also making them broadly available in the poorest and vulnerable regions of the world in order to support infrastructure and building design. Successful implementation of both parts to this commitment will gain the G7 member a score of +1 for full compliance.

Partial compliance is scored when the G7 member has fulfilled the former or the latter half of the commitment. This means that the G7 member has successfully leveraged innovation of Earth observation technologies and related applications or makes them available to the poorest and most vulnerable nations. G7 members will receive a score of −1 for non-compliance if they have not successfully leveraged innovation of Earth observation technologies and related applications, nor made them available to the poorest and most vulnerable nations.

Scoring Guidelines

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>Member does NOT intend to leverage innovations in the field of Earth observation technologies NOR makes them broadly available for vulnerable coastal regions to support infrastructure nor support building design.</td>
</tr>
<tr>
<td>0</td>
<td>Member takes action to leverage innovations in the field of Earth observation technologies BUT does not make them broadly available for vulnerable coastal regions to support infrastructure or support building design.</td>
</tr>
<tr>
<td>+1</td>
<td>Member takes action to leverage innovations in the field of Earth observation technologies AND makes them broadly available for vulnerable coastal regions to support infrastructure or support building design.</td>
</tr>
</tbody>
</table>

Authors: Jiyoon Han and Julia Tops
Lead Analyst: Sofia Louise Lopez
Compliance Director: Harrison Myles

Canada: 0

Canada has partially complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 21 June 2018, the government revealed the next generation of Radarsat satellites and announced the launch date of November 2018. The Radarsat Constellation Mission (RCM) is a collection of three satellites developed by the Canadian Space Agency (CSA) and a private company, MDA. Once launched, the RCM will pursue three main objectives of maritime surveillance, environmental monitoring, and disaster monitoring.

On 3 October 2018, the CSA, the Australian Space Agency, and the United Kingdom Space Agency signed a memorandum of understanding to enhance trilateral cooperation. The agreement will build upon Canada’s ongoing cooperation with Geoscience Australia in Earth observation technologies.

On 22 October 2018, exactEarth Ltd reported that the government will invest CAD7.2 million over a three-year period to support the expansion of exactView RT. ExactView RT consists of a system with more than 60 satellites that observe environmental impact, maritime safety, and navigation.

From 29 October to 2 November 2018, Canada renewed its annual CAD100,000 contribution to the GEO Trust Fund. The fund will support GEO’s main Earth observations activities regarding climate change, sustainable development, and emergency management.

On 15 November 2018, NorthStar Earth and Space Inc. announced partnerships with the federal government and the provincial government of Quebec. Each will contribute CAD13 million to the NorthStar project, a platform based on 40 satellite constellations used to collect data on pollution and environmental changes.

Through its development and investment in new Earth observation satellites and cooperation with other national space agencies, Canada has leveraged innovation to enhance the capabilities of EO technology. However, Canada yet to make this advancement of Earth observation technologies available to poor and vulnerable regions. Thus, Canada receives a score of 0.

Analysts: Harrison Myles and Reema Bazzi

France: +1

France has fully complied with its commitment to leverage innovation in the field of Earth observation (EO) technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 28 June 2018, the Space Climate Observatory (SCO) was launched at the Toulouse Space Show.1946 The SCO is an international initiative led by the French space agency, Centre National d’Etudes Spatiales (CNES).1947 The observatory will combine satellite and in-situ data with modelling technology to advance the world’s understanding of climate change and inform state strategies in light of rising sea levels, melting glaciers, and deadly droughts and floods.1948 Countries across the world will have open access to this information, including poor and vulnerable regions in Africa and Asia.1949

On 20 July 2018, the President of the French space agency signed an agreement with the CEO and chair of the board of the Azerbaijani satellite operator, Azercosmos.1950 The two countries agreed to increase their cooperation in space, with a specific emphasis on Earth observation and the effects of climate change.1951

On 2 August 2018, the French space agency and the Greek space agency Hellenic Space Agency signed an agreement finalizing the terms and conditions of bilateral cooperation.1952 This cooperation will include collaboration in areas including but not limited to space sciences, Earth observation, and telecommunication.1953 This partnership is also considering expansions to include emergency response as well, given recent wildfires in Attiki, Greece.1954

On 2 September 2018, the space agencies of France and Australia signed a memorandum of understanding to advance their respective space programs.1955 The Australia Space Agency and the CNES agreed to bolster their capabilities in space operation, Earth observation, positioning systems,
and communications through partnerships with universities, research institutions, businesses, and communities.1956

On 7 October 2018, the CNES opened a new office at the French embassy in Abu Dhabi to strengthen French space cooperation with the United Arab Emirates (UAE).1957 This will enable greater progress in the partnership between the CNES and the UAE’s Space Agency, which seeks to create a joint hyperspectral Earth observation satellite program.1958

On 9 October 2018, the CNES signed a framework agreement with Uzbekistan’s Minister of Foreign Affairs Abdulaziz Kamilov.1959 The agreement includes collaboration in space science, Earth observation, telecommunications satellites, space applications, space research and technology, and coordination of international regulatory issues.1960

On 15 October 2018, the leaders of CNES, the Korean Aerospace Research Institute and the Korean Meteorological Administration signed a letter of intent concerning the SCO, an initiative to share climate change data with countries around the world.1961 This bilateral agreement between France and Korea aims to aid the three agencies in establishing necessary infrastructure for the SCO and provide the observatory with satellite data on oceans, land surfaces and ecosystems.1962

From 18 to 19 October 2018, CNES, the French Alliance for Environmental Research and the French National Research Institute for Sustainable Development jointly hosted the Special Session of the UN Science-Policy-Business Forum on the Environment in Paris.1963 The event launched an international working group that will restructure funding models, integrate artificial intelligence and big data into the field of Earth observation technologies, and creates a multi-stakeholder climate change information platform.1964

25 February 2019
On 26 October 2018, the CNES officially assumed its role as chair of the International Charter on Space and Major Disasters for the next six months on behalf of France. The Charter was created in 1999, and it has 17 member agencies operating Earth-imaging satellites with a commitment to sharing disaster imagery among affected countries.

From 2 November to 4 November 2018, the CNES signed agreements with the Vietnam Academy of Science and Technology, the University of Science and Technology of Hanoi, the Institute of Marine Environment and Resources, the Space Technology Institute and the Institute of Oceanography with the aim of bolstering French-Vietnamese space cooperation. The agreements focus on the importance of bilateral involvement in the development of climate research, specifically with regards to space geophysics, oceanography and satellite technology.

On 19 November 2018, the CNES and the Belgian Science Policy Office signed a letter of intent to increase French-Belgian space and climate change research cooperation. The two countries will create a joint working group to support Earth observation technologies, water resource management, and the SCO.

Through its bilateral agreements in support of advancing Earth observation and its leadership of the SCO, France fully complied with its commitment to leveraging innovation in the field of EO technologies and making them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

Thus, France receives a score of +1.

Analysts: Harrison Myles and Gautier Boyrie

Germany: 0

Germany has fully complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 29 June 2018, the German Aerospace Center (DLR) Earth Sensing Imaging Spectrometer (DESIS) was launched to the ISS from Cape Canaveral on a SpaceX Falcon 9 rocket. DESIS is an

environmental and resource monitoring system developed by Germany’s DLR Institute of Optical Sensor Systems. It observes the Earth and provides hyperspectral data to support scientific, humanitarian, and commercial objectives. This device will enable “an excellent degree of flexibility in response to environmental disasters or humanitarian crises through the rapid supply of information to emergency services.”

On 11 July 2018, the Sentinel-5P data services operation began. The Earth observation satellite involved in these operations provides daily global measurements of “ozone, nitrogen dioxide, carbon monoxide, and aerosol and cloud properties.” DLR is responsible for analyzing the satellite data and provides its findings over an open web service. Government agencies, companies, and the scientific community can “view or download the data for selected regions in different projections and data formats, or to integrate them directly into their own systems.”

From 14 to 22 July 2018, Chair of the Executive Board at the German Aerospace Center Pascale Ehrenfreund and DLR Executive Board Member for Space Research and Technology Hansjörg Dittus attended the Committee on Space Research World Space Congress. The forum aims to promote international collaboration for scientific research in space, and establishes and strengthens space research partnerships. Hansjörg Dittus gave a presentation outlining the current state and future requirements for space-based Earth observation systems.

On 18 July 2018, DLR initiated the Big Data Platform cross-sectoral project. The project aims to explore and improve analytical techniques that make use of data mining and machine learning, which

are often used in Earth observation research. This means that “buildings, roads and even types of vegetation can be detected with far greater accuracy on the basis of aerial and satellite images.” Smart data analysis using machine-learning methods has also proven useful for climate computing and obtaining a better understanding of climate mechanisms.

On 14 September 2018, the DLR F-SAR radar system began operations in Canada’s Northwest Territories to record highly accurate observations of permafrost. Scientists from the DLR are working in collaboration with Canada’s Centre for Mapping and Earth Observation to carry out a comprehensive analysis of vegetation and various soil conditions. This Earth observation project is one of few to provide observations with extremely high temporal and spatial resolution.

On 2 October 2018, DLR unveiled the first images from the DESIS hyperspectral Earth observation instrument to the International Astronautical Congress. The data, made available in collaboration with the Multiple User System for Earth Sensing platform, will make it possible for scientists to gain precise details about changing ecosystems and environmental monitoring.

On 8 October 2018, DLR freely released the TanDEM-X Digital Elevation Model, a global earth observation dataset that covers all 148 million square kilometres of Earth’s land surfaces thirty times more accurately than any other global dataset.

On 2 November 2018, Germany contributed an initial pledge of EUR100,000 to the new GEO Land Degradation Neutrality Initiative. The initiative will coordinate data providers and governments to

support global efforts to reduce and reverse land degradation. Germany’s pledge will contribute to the development and accessibility of Earth observation datasets for immediate action in the field of sustainable land development.

Germany has supported collaborative innovations through technological advancements in Earth observation coverage. However, it has yet to make these innovations available to the poorest and most vulnerable nations through open data sharing.

Thus, Germany receives a score of 0.

Analysts: David Manocchio and Michael Zasev

Italy: 0

Italy has partially complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 6 July 2018, the Italian Space Agency Agenzia Spaziale Italiana (ASI) signed a joint declaration with Virgin Galactic of the Virgin Group conglomerate. The parties agreed to collaborate on suborbital flight and microgravity education, astronaut training, and biology and biotechnology research and technology. The agreement also discussed the development of a space vehicle system by Virgin’s Spaceship Company, to be used at the future Grottaglie Spaceport in Italy. This infrastructure would be used by both ASI and private customers, with the potential to launch satellites capable of Earth observation.

On 28 September 2018, the Florence Division of the Institute of Atmospheric Pollution Research, an affiliate of the National Research Council, announced the 11th International Symposium on Digital Earth from 24 to 27 September 2019 in Florence. The conference will discuss how digital Earth technology is changing and what future innovations are on the horizon.

From 29 October to 2 November 2018, Italy participated in GEO Week 2018, alongside 104 other member governments and 127 participating organizations. Participants discussed the future use of Earth observation technology for the benefit of humankind in relation to the Sendai Framework for

1992 New GEO Land Degradation Neutrality Initiative — Germany pledges an initial €100,000, UN (Bonn) 2 November 2018. Access Date: 13 December 2018. https://www.unbonn.org/node/13211?bclid=lwAR3Z7XsIZ7xPDu7dDjdBTQo27PHF9c7YXZtpM2U6rJ8zlLTdBtv-P-eig
1995 New GEO Land Degradation Neutrality Initiative — Germany pledges an initial €100,000, UN (Bonn) 2 November 2018. Access Date: 13 December 2018. https://www.unbonn.org/node/13211?bclid=lwAR3Z7XsIZ7xPDu7dDjdBTQo27PHF9c7YXZtpM2U6rJ8zlLTdBtv-P-eig
Disaster Risk Reduction, the Paris Climate Agreement, and the United Nations 2030 Agenda for Sustainable Development.2001

Through its support of space infrastructure, Italy has enhanced the capacity of its Earth observation projects and encouraged innovation. However, Italy does not specifically make Earth observation technologies widely available to poor and vulnerable parts of the world.

Thus, Italy receives a score of 0.

\textit{Analysts: Harrison Myles and Jessica Afonso}

Japan: +1

Japan has fully complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 12 June 2018, the Japanese Aerospace Exploration Agency (JAXA) and Mitsubishi Heavy Industries Ltd. launched a rocket containing an intelligence-gathering reconnaissance satellite from the Tanegashima Space Center.2002 The IGS-Radar 6 satellite carries a radar with the capability of capturing ground-level images day or night and regardless of weather conditions.2003 The new satellite will join the government’s Information Gathering Satellite series.2004

On 2 October 2018, the United Nations Office for Outer Space Affairs and JAXA announced the beginning of the fourth round of the KiboCUBE program.2005 The capacity-building project provides developing countries with the opportunity to create cube satellites capable of Earth observation and launch them from the Japanese module on the International Space Station.2006

On 18 October 2018, the Vietnam National Space Center announced the December 2019 launch of the MicroDragon.2007 The MicroDragon is a joint Vietnam-Japan EO satellite project created to mitigate the impacts of disasters and climate change.2008

On 29 October 2018, Japanese satellite Ibuki-2, also known as the Second Greenhouse Gases Observing Satellite (GOSAT-2), was successfully launched into the orbit.2009 The satellite was

developed by JAXA, and it will measure atmospheric concentrations of carbon dioxide, methane, and other greenhouse gases to advance the fight against climate change.2010

From 29 October to 2 November 2018, Japan hosted GEO Week 2018, during which member organizations and governments met to discuss Earth observation technology, the Sendai Framework for Disaster Risk Reduction, the Paris Climate Agreement, and the United Nations 2030 Agenda for Sustainable Development.2011

On 1 November 2018, JAXA expanded the domain of the JAXA Realtime Rainfall Watch website to include GEO-satellite data.2012 The site provides the public with global real-time rainfall information, especially in areas lacking ground-observation networks, such as the Asian Pacific.2013

On 30 November 2018, JAXA announced the anticipated January 2019 launch of Epsilon-4, the fourth Epsilon Launch Vehicle with satellite technology.2014 Epsilon rockets are designed to reduce operating costs and launch more frequently than the H-2A and H-2B rockets.2015

Through its development of new Earth observation satellites and advancements in making Earth observation data accessible to poor and vulnerable regions in Asia, Japan has leveraged innovation to enhance the capabilities of Earth observation technology.

Thus, Japan receives a score of +1.

\textit{Analysts: Sofia Louise Lopez and Jessica Afonso}

\textbf{United Kingdom: +1}

The United Kingdom has fully complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 27 June 2018, Avanti Communications announced the Satellite Enablement for Disaster Risk Reduction in Kenya to enhance the country’s disaster planning and response mechanisms.2016 The

\begin{footnotesize}
\begin{itemize}
\end{itemize}
\end{footnotesize}
On 16 July 2018, the UK announced a partnership with Orbex and Lockheed Martin to develop new space launch technology. The UKSA provided Lockheed Martin with two grants totalling GBP23.5 million for the development of vertical launch operations in Sutherland and new systems in Reading for the deployment of satellites. GBP5.5 million was provided to Orbex to create a new rocket capable of launching small satellites into the orbit, and the satellites will have commercial and Earth observation uses.

On 26 July 2018, a multispectral imaging device research project led by the University of Strathclyde received GBP719,000 in funding from the UKSA Centre for Earth Observation Instrumentation. The developing technology will fit on a nanosatellite and monitor climate change, ocean activity, forest fires, and shipping traffic.

On 17 September 2018, two large Earth observation satellites, the NovaSAR-1, and SSTL S1-4, were launched in India. The UKSA invested GBP2.1 million in the NovaSAR-1, and the satellite will “significantly boost the UK’s sovereign Earth observation capabilities.”

On 3 October 2018, the UK signed a memorandum of understanding with Australia and Canada. The agreement will enhance trilateral cooperation between the space agencies in areas of space science, policy, law, and the NovaSAR earth observation satellite.

On 5 November 2018, the Massive Open Online Course (MOOC) on “Monitoring Atmospheric Conditions” began to provide accessible and free information on monitoring atmospheric conditions.
using in situ measurements, satellite observations, and numerical modelling. The course is a collaboration between the UK’s National Centre for Earth Observation, the European Union, the Copernicus Atmosphere Service, the NASA Jet Propulsion Laboratory, and other space partners. The MOOC will explore how threats to the atmosphere can affect human health, climate change, and ecosystems.

On 30 November 2018, the UKSA launched a new pilot program in Kenya, Ghana, and Zambia. The program seeks to use satellite and meteorological data such as ground and soil temperatures to predict when pests and diseases may occur. The system will allow preventive action to be taken in order to save crops.

Through its support of satellite launching and imaging technology, the United Kingdom remains committed to innovation in the field of Earth observation technologies and making them broadly available in the most vulnerable regions of the world in support of infrastructure and building design.

Thus, the United Kingdom receives a score of +1.

Analysts: Harrison Myles and Reema Bazzi

United States: 0

The United States has partially complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 27 September 2018, the National Aeronautics and Space Association (NASA) signed a contract with the University of Alaska at Fairbanks for the operation of the Synthetic Aperture Radar Distributed Active Archive Center of NASA’s Earth Observing System Data and Information System.

On 28 September 2018, NASA sponsored DigitalGlobe, Planet, and Spire in a pilot program to evaluate the possibility of using commercial small-sat Earth data for scientific purposes.

On 5 October 2018, the US Geological Survey and the Earth Resources Observation and Science Center met with the Requirements, Capabilities, and Analysis for Earth Observation project at the Joint Agency Commercial Imagery Evaluation workshop. The workshop discussed how Earth observation data can be collected to improve its use for scientific study. The workshop also explored the further integration of satellite systems to bolster the US’s imagery capabilities.

On 5 December 2018, the SpaceX Dragon spacecraft carried NASA’s Global Ecosystem Dynamics Investigation (GEDI) into space. The GEDI will provide observations of forests and topography to advance research on carbon and water cycling processes, biodiversity, habitat, and the potential for forests to absorb carbon.

The United States has strived to make innovations in the technological advancement of Earth observation coverage. However, it has not made these innovations explicitly available to the poorest and most vulnerable nations. Thus, the United States receives a score of 0.

European Union: +1

The European Union fully partially complied with its commitment to leverage innovation in the field of Earth observation technologies and related applications and make them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

On 20 June 2018, Commissioner for Internal Market, Industry, Entrepreneurship, and Small and Medium-Sized Enterpries Elżbieta Bieńkowska announced the launch of the Copernicus Data and Information Access Services. The initiative will make obtaining and downloading satellite data more accessible, simple and affordable. Copernicus satellites are used to improve responses to natural disasters by monitoring six areas: land, ocean, atmosphere, climate change, emergency management response, and security. The European Commission also proposed expanding these services under the EUR16 billion EU Space Programme beyond 2020 to adapt to emerging needs such as carbon dioxide monitoring and polar missions to fight the effects of climate change.

On 22 June 2018, the EU Civil Protection Mechanism sent EUR400,000 in aid to Guatemala following a volcanic eruption. Such assistance included basic healthcare supplies, water, sanitation, and psychological support. The Copernicus satellite’s mapping service generated 18 maps to assist in identifying the most affected areas.

On 25 July 2018, the EU launched four additional Galileo satellites, expected to generate precise signals for the EU’s global satellite navigation system. Galileo provides three types of navigation services: Galileo Open Service for positioning and timing purposes (such as communicating a vehicle’s location to emergency services), Galileo’s Search and Rescue Service to locate distress signals, and Galileo Public Regulated Service for security purposes such as military operations and national emergencies. This recent launch brings Galileo to a total of 26 satellites and brings the EU closer to Galileo’s full completion in 2020.

On 26 July 2018, the European Commission and the African Union reached a deal that will expand Copernicus data access to African researchers studying Earth observation. Through the satellites, researchers will have access to photographs of sea topography, land temperature, vegetation changes, and weather patterns. African scientists and institutions will also receive technical support from European research and space agencies. The EU intends to promote the use of satellite technology to support sustainable development, especially in Africa, which experiences more intense and frequent extreme weather events as a result of climate change.

On 6 August 2018, the EU sent aid to Sweden to fight forest fires. The EU used the Copernicus program to produce 37 satellite maps that identified the most impacted areas.

On 8 August 2018, the EU provided aid to thousands of people displaced by the earthquakes in Lombok, Indonesia. The Copernicus program was employed to assist Indonesian civil protection authorities.

On 18 September 2018, at the ITS World Congress 2018 in the Bella Centre in Copenhagen, the European Global Navigation Satellite Systems Agency unveiled the eCall emergency response system and other innovations in EO technology to make “Europe’s roads smarter, greener and safe.”

On 18 September 2018, the European Commission’s emergency satellite mapping service Copernicus delivered data on the most affected areas of Typhoon Mangkhut in the Philippines.

On 29 September 2018, Copernicus provided mapping services to Indonesian authorities after a deadly earthquake hit the island of Sulawesi.

On 16 October 2018, following a flood in southeast France, French authorities accessed Copernicus to receive mapping data for the Herault and Aude counties.

On 29 October 2018, the EU committed EUR300 million to improve the health of the oceans. The Copernicus EO program received EUR12.9 million for maritime security and coastal environmental research.

On 5 November 2018, the European Commission’s 24/7 Emergency Response Coordination Centre helped Italian authorities handle heavy floods affecting many parts of the country. The EU’s Copernicus satellite mapping service was activated for affected areas in Sicily and Veneto.

On 7 November 2018, the European weather satellite MetOp-C was launched from French Guinea. The satellite was developed through a partnership with the European Organization for the Exploration of Meteorological Satellites and the European Space Agency (ESA). The satellite will monitor weather patterns, the ozone layer, gases, wind speeds, and climate change.

From 12-16 November 2018, the ESA hosted Earth Observation Φ-week in Frascati, Italy.2066 Events during Φ-week discussed the future of several space domains, including Earth observation.2067

On 20 November 2018, the ESA Vega rocket carried a Moroccan EO satellite from French Guinea into space.2068 This satellite will assist in land-mapping, natural disaster prevention, and environmental monitoring.2069

On 4 December 2018, over 40 entrepreneurs were awarded EUR1.6 million to create services and products using data provided by the Copernicus and Galileo satellite systems.2070 The award will encourage innovation in various observational fields, including wildfire alerts and farming.2071

Through its support of satellite launches, imaging technology, and disaster prevention in vulnerable coastline states, the EU remains committed to leveraging innovation in the field of EO technologies and making them broadly available in the most vulnerable regions of the world to support infrastructure and building design.

Thus, the European Union receives a score of +1.

\textit{Analysts: Sofia Louise Lopez and Elodie Girves}

